Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Nutr ; 154(3): 856-865, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38160803

RESUMO

BACKGROUND: Hepatic mitochondrial dysfunction is a major cause of fat accumulation in the liver. Individuals with fatty liver conditions have hepatic mitochondrial structural abnormalities and a switch in the side chain composition of the mitochondrial phospholipid, cardiolipin, from poly- to monounsaturated fatty acids. Linoleic acid (LA), an essential dietary fatty acid, is required to remodel nascent cardiolipin (CL) to its tetralinoleoyl cardiolipin (L4CL, CL with 4 LA side chains) form, which is integral for mitochondrial membrane structure and function to promote fatty acid oxidation. It is unknown, however, whether increasing LA in the diet can increase hepatic L4CL concentrations and improve mitochondrial respiration in the liver compared with a diet rich in monounsaturated and saturated fatty acids. OBJECTIVES: The main aim of this study was to test the ability of a diet fortified with LA-rich safflower oil (SO), compared with the one fortified with lard (LD), to increase concentrations of L4CL and improve mitochondrial respiration in the livers of mice. METHODS: Twenty-four (9-wk-old) C57 BL/J6 male mice were fed either the SO or LD diets for ∼100 d, whereas food intake and body weight, fasting glucose, and glucose tolerance tests were performed to determine any changes in glycemic control. RESULTS: Livers from mice fed SO diet had higher relative concentrations of hepatic L4CL species compared with LD diet-fed mice (P value = 0.004). Uncoupled mitochondria of mice fed the SO diet, compared with LD diet, had an increased baseline oxygen consumption rate (OCR) and succinate-driven respiration (P values = 0.03 and 0.01). SO diet-fed mice had increased LA content in all phospholipid classes compared with LD-fed mice (P < 0.05). CONCLUSIONS: Our findings reveal that maintaining or increasing hepatic L4CL may result in increased OCR in uncoupled hepatic mitochondria in healthy mice whereas higher oleate content of CL reduced mitochondrial function shown by lower OCR in uncoupled mitochondria.


Assuntos
Cardiolipinas , Ácido Linoleico , Masculino , Camundongos , Animais , Cardiolipinas/metabolismo , Mitocôndrias , Gorduras na Dieta/metabolismo , Ácidos Graxos/metabolismo , Fígado/metabolismo , Dieta , Fosfolipídeos/metabolismo , Ácidos Linoleicos/metabolismo , Respiração
3.
Front Cell Neurosci ; 17: 1227241, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37636589

RESUMO

The consumption of diets high in saturated fatty acids and/or refined carbohydrates are associated with neuroinflammation, cognitive dysfunction, and neurodegenerative disease. In contrast, diets high in polyunsaturated fatty acids are associated with anti-inflammatory and neuroprotective effects. We have previously shown that high fat diet (HFD) consumption increases saturated fatty acids and decreases polyunsaturated fatty acids in the hippocampus. We have further shown that HFD elicits exaggerated neuroinflammation and reduced synaptic elements, and results in robust memory deficits in aged rats. Here, we examined the impact of palmitate, an abundant dietary saturated fat, on a variety of cellular responses in BV2 microglia and HippoE-14 neurons, and the extent to which the omega-3 fatty acid, docosahexaenoic acid (DHA), would buffer against these responses. Our data demonstrate that DHA pretreatment prevents or partially attenuates palmitate-induced alterations in proinflammatory, endoplasmic reticulum stress, and mitochondrial damage-associated gene expression in both cell types. Furthermore, we show that synaptoneurosomes isolated from aged, HFD-fed mice are engulfed by BV2 microglia at a faster rate than synaptoneurosomes isolated from aged, chow-fed mice, suggesting HFD alters signaling at synapses to hasten their engulfment by microglia. Consistent with this notion, we found modest increases in complement proteins and a decrease in CD47 protein expression on synaptoneurosomes isolated from the hippocampus of aged, HFD-fed mice. Interestingly, palmitate reduced BV2 microglial phagocytosis, but only of synaptoneurosomes isolated from chow-fed mice, an effect that was prevented by DHA pretreatment. Lastly, we measured the impact of palmitate and DHA on mitochondrial function in both microglial and neuronal cell models using the Seahorse XFe96 Analyzer. These data indicate that DHA pretreatment does not mitigate palmitate-induced reductions in mitochondrial respiration in BV2 microglia and HippoE-14 neurons, suggesting DHA may be acting downstream of mitochondrial function to exert its protective effects. Together, this study provides evidence that DHA can ameliorate the negative impact of palmitate on a variety of cellular functions in microglia- and neuron-like cells.

4.
J Biol Chem ; 299(8): 104917, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37315788

RESUMO

Although aging is associated with progressive adiposity and a decline in liver function, the underlying molecular mechanisms and metabolic interplay are incompletely understood. Here, we demonstrate that aging induces hepatic protein kinase Cbeta (PKCß) expression, while hepatocyte PKCß deficiency (PKCßHep-/-) in mice significantly attenuates obesity in aged mice fed a high-fat diet. Compared with control PKCßfl/fl mice, PKCßHep-/- mice showed elevated energy expenditure with augmentation of oxygen consumption and carbon dioxide production which was dependent on ß3-adrenergic receptor signaling, thereby favoring negative energy balance. This effect was accompanied by induction of thermogenic genes in brown adipose tissue (BAT) and increased BAT respiratory capacity, as well as a shift to oxidative muscle fiber type with an improved mitochondrial function, thereby enhancing oxidative capacity of thermogenic tissues. Furthermore, in PKCßHep-/- mice, we determined that PKCß overexpression in the liver mitigated elevated expression of thermogenic genes in BAT. In conclusion, our study thus establishes hepatocyte PKCß induction as a critical component of pathophysiological energy metabolism by promoting progressive hepatic and extrahepatic metabolic derangements in energy homeostasis, contributing to late-onset obesity. These findings have potential implications for augmenting thermogenesis as a means of combating aging-induced obesity.


Assuntos
Fígado , Obesidade , Proteína Quinase C beta , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/genética , Fígado/metabolismo , Fígado/patologia , Camundongos Endogâmicos C57BL , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Oxirredução , Proteína Quinase C beta/deficiência , Proteína Quinase C beta/genética , Proteína Quinase C beta/metabolismo , Regulação Enzimológica da Expressão Gênica , Envelhecimento , Transdução de Sinais
5.
Arthritis Res Ther ; 25(1): 85, 2023 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-37210569

RESUMO

BACKGROUND: Insulin resistance affects a substantial proportion of patients with rheumatoid arthritis (RA). Skeletal muscle mitochondrial dysfunction results in the accumulation of lipid intermediates that interfere with insulin signaling. We therefore sought to determine if lower oxidative phosphorylation and muscle mitochondrial content are associated with insulin resistance in patients with RA. METHODS: This was a cross-sectional prospective study of RA patients. Matsuda index from the glucose tolerance test was used to estimate insulin sensitivity. Mitochondrial content was measured by citrate synthase (CS) activity in snap-frozen muscle samples. Mitochondrial function was measured by using high-resolution respirometry of permeabilized muscle fibers and electron transport chain complex IV enzyme kinetics in isolated mitochondrial subpopulations. RESULTS: RA participants demonstrated lower insulin sensitivity as measured by the Matsuda index compared to controls [median 3.95 IQR (2.33, 5.64) vs. 7.17 (5.83, 7.75), p = 0.02]. There was lower muscle mitochondrial content among RA vs. controls [median 60 mU/mg IQR (45, 80) vs. 79 mU/mg (65, 97), p = 0.03]. Notably, OxPhos normalized to mitochondrial content was higher among RA vs. controls [mean difference (95% CI) = 0.14 (0.02, 0.26), p = 0.03], indicating a possible compensatory mechanism for lower mitochondrial content or lipid overload. Among RA participants, the activity of muscle CS activity was not correlated with the Matsuda index (ρ = - 0.05, p = 0.84), but it was positively correlated with self-reported (IPAQ) total MET-minutes/week (ρ = 0.44, p = 0.03) and Actigraph-measured time on physical activity (MET rate) (ρ = 0.47, p = 0.03). CONCLUSIONS: Mitochondrial content and function were not associated with insulin sensitivity among participants with RA. However, our study demonstrates a significant association between muscle mitochondrial content and physical activity level, highlighting the potential for future exercise interventions that enhance mitochondrial efficiency in RA patients.


Assuntos
Artrite Reumatoide , Resistência à Insulina , Humanos , Resistência à Insulina/fisiologia , Estudos de Casos e Controles , Estudos Transversais , Estudos Prospectivos , Músculo Esquelético , Mitocôndrias , Artrite Reumatoide/metabolismo , Lipídeos , Mitocôndrias Musculares/metabolismo
6.
Res Sq ; 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36798161

RESUMO

Muscle fitness and mass deteriorate under the conditions of obesity and aging for reasons yet to be fully elucidated. Herein, we describe a novel pathway linking peripheral nutrient sensing and skeletal muscle function through the sweet taste receptor TAS1R2 and the involvement of ERK2-PARP1-NAD signaling axis. Muscle-specific deletion of TAS1R2 (mKO) in mice produced elevated NAD levels due to suppressed PARP1 activity, improved mitochondrial function, increased muscle mass and strength, and prolonged running endurance. Deletion of TAS1R2 in obese or aged mice also ameliorated the decline in muscle mass and fitness arising from these conditions. Remarkably, partial loss-of-function of TAS1R2 (rs35874116) in older, obese humans recapitulated the healthier muscle phenotype displayed by mKO mice in response to exercise training. Our findings show that inhibition of the TAS1R2 signaling in skeletal muscle is a promising therapeutic approach to preserve muscle mass and function.

8.
Nutrients ; 14(6)2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35334860

RESUMO

The prevalence of metabolic diseases is rapidly increasing and a principal contributor to this is diet, including increased consumption of energy-rich foods and foods with added phosphates. Exercise is an effective therapeutic approach to combat metabolic disease. While exercise is effective to combat the detrimental effects of a high-fat diet on metabolic health, the effects of exercise on a high-phosphate diet have not been thoroughly investigated. Here, we investigated the effects of a high-fat or high-phosphate diet in the presence or absence of voluntary exercise on metabolic function in male mice. To do this, mice were fed a low-fat, normal-phosphate diet (LFPD), a high-phosphate diet (HPD) or a high-fat diet (HFD) for 6 weeks and then subdivided into either sedentary or exercised (housed with running wheels) for an additional 8 weeks. An HFD severely impaired metabolic function in mice, increasing total fat mass and worsening whole-body glucose tolerance, while HPD did not induce any notable effects on glucose metabolism. Exercise reverted most of the detrimental metabolic adaptations induced by HFD, decreasing total fat mass and restoring whole-body glucose tolerance and insulin sensitivity. Interestingly, voluntary exercise had a similar effect on LFPD and HPD mice. These data suggest that a high-phosphate diet does not significantly impair glucose metabolism in sedentary or voluntary exercised conditions.


Assuntos
Condicionamento Físico Animal , Animais , Dieta Hiperlipídica/efeitos adversos , Glucose/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfatos , Condicionamento Físico Animal/fisiologia
9.
Biology (Basel) ; 12(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36671702

RESUMO

Cardiolipin (CL) is a phospholipid unique to the inner mitochondrial membrane that supports respiratory chain structure and function and is demonstrated to be influenced by types of dietary fats. However, the influence of dietary fat on CL species and how this best supports mitochondrial function in brown adipose tissue (BAT), which exhibits an alternative method of energy utilization through the uncoupling of the mitochondrial proton gradient to generate heat, is not well understood. Therefore, the aim of our study was to evaluate metabolic parameters, interscapular BAT CL quantity, species, and mitochondrial function in mice consuming isocaloric moderate-fat diets with either lard (LD; similar fatty acid profile to western dietary patterns) or safflower oil high in linoleic acid (SO), shown to be metabolically favorable in large clinical meta-analyses. Mice fed the SO diet exhibited decreased adiposity, improved insulin sensitivity, and enrichment of LA-containing CL species in BAT CL. Furthermore, mice fed the SO diet exhibit higher levels of OXPHOS complex proteins and increased oxygen consumption in BAT. Our findings demonstrate that dietary consumption of LA-rich oil improves metabolic parameters, increases LA-containing CL species, and improves BAT function when compared to the consumption of lard in mice during diet-induced weight gain.

10.
Mol Metab ; 54: 101343, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34583010

RESUMO

Regulation of organismal homeostasis in response to nutrient availability is a vital physiological process that involves inter-organ communication. Understanding the mechanisms controlling systemic cross-talk for the maintenance of metabolic health is critical to counteract diet-induced obesity. Here, we show that cardiac-derived transforming growth factor beta 1 (TGF-ß1) protects against weight gain and glucose intolerance in mice subjected to high-fat diet. Secretion of TGF-ß1 by cardiomyocytes correlates with the bioavailability of this factor in circulation. TGF-ß1 prevents adipose tissue inflammation independent of body mass and glucose metabolism phenotypes, indicating protection from adipocyte dysfunction-driven immune cell recruitment. TGF-ß1 alters the gene expression programs in white adipocytes, favoring their fatty acid oxidation and consequently increasing their mitochondrial oxygen consumption rates. Ultimately, subcutaneous and visceral white adipose tissue from cadiac-specific TGF-ß1 transgenic mice fail to undergo cellular hypertrophy, leading to reduced overall adiposity during high-fat feeding. Thus, TGF-ß1 is a critical mediator of heart-fat communication for the regulation of systemic metabolism.


Assuntos
Tecido Adiposo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Miócitos Cardíacos/metabolismo , Obesidade/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Feminino , Intolerância à Glucose , Masculino , Camundongos , Camundongos Transgênicos , Aumento de Peso
11.
Mol Metab ; 44: 101133, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33271332

RESUMO

OBJECTIVE: Nonalcoholic hepatic steatosis, also known as fatty liver, is a uniform response of the liver to hyperlipidic-hypercaloric diet intake. However, the post-ingestive signals and mechanistic processes driving hepatic steatosis are not well understood. Emerging data demonstrate that protein kinase C beta (PKCß), a lipid-sensitive kinase, plays a critical role in energy metabolism and adaptation to environmental and nutritional stimuli. Despite its powerful effect on glucose and lipid metabolism, knowledge of the physiological roles of hepatic PKCß in energy homeostasis is limited. METHODS: The floxed-PKCß and hepatocyte-specific PKCß-deficient mouse models were generated to study the in vivo role of hepatocyte PKCß on diet-induced hepatic steatosis, lipid metabolism, and mitochondrial function. RESULTS: We report that hepatocyte-specific PKCß deficiency protects mice from development of hepatic steatosis induced by high-fat diet, without affecting body weight gain. This protection is associated with attenuation of SREBP-1c transactivation and improved hepatic mitochondrial respiratory chain. Lipidomic analysis identified significant increases in the critical mitochondrial inner membrane lipid, cardiolipin, in PKCß-deficient livers compared to control. Moreover, hepatocyte PKCß deficiency had no significant effect on either hepatic or whole-body insulin sensitivity supporting dissociation between hepatic steatosis and insulin resistance. CONCLUSIONS: The above data indicate that hepatocyte PKCß is a key focus of dietary lipid perception and is essential for efficient storage of dietary lipids in liver largely through coordinating energy utilization and lipogenesis during post-prandial period. These results highlight the importance of hepatic PKCß as a drug target for obesity-associated nonalcoholic hepatic steatosis.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Hepatócitos/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteína Quinase C beta/metabolismo , Proteína Quinase C beta/farmacologia , Animais , Gorduras na Dieta/metabolismo , Modelos Animais de Doenças , Glucose/metabolismo , Homeostase , Resistência à Insulina , Metabolismo dos Lipídeos , Lipogênese , Fígado/metabolismo , Masculino , Camundongos , Mitocôndrias/metabolismo , Obesidade/metabolismo , Proteína Quinase C beta/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Aumento de Peso
12.
Front Cardiovasc Med ; 6: 69, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31214598

RESUMO

Obesity is a complex disease that affects whole body metabolism and is associated with an increased risk of cardiovascular disease (CVD) and Type 2 diabetes (T2D). Physical exercise results in numerous health benefits and is an important tool to combat obesity and its co-morbidities, including cardiovascular disease. Exercise prevents both the onset and development of cardiovascular disease and is an important therapeutic tool to improve outcomes for patients with cardiovascular disease. Some benefits of exercise include enhanced mitochondrial function, restoration and improvement of vasculature, and the release of myokines from skeletal muscle that preserve or augment cardiovascular function. In this review we will discuss the mechanisms through which exercise promotes cardiovascular health.

13.
Circulation ; 139(11): 1422-1434, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30612451

RESUMO

BACKGROUND: Inorganic phosphate (Pi) is used extensively as a preservative and a flavor enhancer in the Western diet. Physical inactivity, a common feature of Western societies, is associated with increased cardiovascular morbidity and mortality. It is unknown whether dietary Pi excess contributes to exercise intolerance and physical inactivity. METHODS: To determine an association between Pi excess and physical activity in humans, we assessed the relationship between serum Pi and actigraphy-determined physical activity level, as well as left ventricular function by cardiac magnetic resonance imaging, in DHS-2 (Dallas Heart Study phase 2) participants after adjusting for relevant variables. To determine direct effects of dietary Pi on exercise capacity, oxygen uptake, serum nonesterified fatty acid, and glucose were measured during exercise treadmill test in C57/BL6 mice fed either a high-Pi (2%) or normal-Pi (0.6%) diet for 12 weeks. To determine the direct effect of Pi on muscle metabolism and expression of genes involved in fatty acid metabolism, additional studies in differentiated C2C12 myotubes were conducted after subjecting to media containing 1 to 3 mmol/L Pi (pH 7.0) to simulate in vivo phosphate conditions. RESULTS: In participants of the DHS-2 (n=1603), higher serum Pi was independently associated with reduced time spent in moderate to vigorous physical activity ( P=0.01) and increased sedentary time ( P=0.004). There was no association between serum Pi and left ventricular ejection fraction or volumes. In animal studies, compared with the control diet, consumption of high-Pi diet for 12 weeks did not alter body weight or left ventricular function but reduced maximal oxygen uptake, treadmill duration, spontaneous locomotor activity, fat oxidation, and fatty acid levels and led to downregulation of genes involved in fatty acid synthesis, release, and oxidation, including Fabp4, Hsl, Fasn, and Pparγ, in muscle. Similar results were recapitulated in vitro by incubating C2C12 myotubes with high-Pi media. CONCLUSIONS: Our data demonstrate a detrimental effect of dietary Pi excess on skeletal muscle fatty acid metabolism and exercise capacity that is independent of obesity and cardiac contractile function. Dietary Pi may represent a novel and modifiable target to reduce physical inactivity associated with the Western diet.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Tolerância ao Exercício/efeitos dos fármacos , Ácidos Graxos/metabolismo , Músculo Esquelético/efeitos dos fármacos , Fosfatos/efeitos adversos , Fósforo na Dieta/efeitos adversos , Animais , Linhagem Celular , Metabolismo Energético/genética , Exercício Físico , Tolerância ao Exercício/genética , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Consumo de Oxigênio , Fosfatos/administração & dosagem , Fosfatos/metabolismo , Fósforo na Dieta/administração & dosagem , Fósforo na Dieta/metabolismo , Comportamento Sedentário
14.
Cell Rep ; 23(13): 3701-3709, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29949755

RESUMO

Micropeptide regulator of ß-oxidation (MOXI) is a conserved muscle-enriched protein encoded by an RNA transcript misannotated as non-coding. MOXI localizes to the inner mitochondrial membrane where it associates with the mitochondrial trifunctional protein, an enzyme complex that plays a critical role in fatty acid ß-oxidation. Isolated heart and skeletal muscle mitochondria from MOXI knockout mice exhibit a diminished ability to metabolize fatty acids, while transgenic MOXI overexpression leads to enhanced ß-oxidation. Additionally, hearts from MOXI knockout mice preferentially oxidize carbohydrates over fatty acids in an isolated perfused heart system compared to wild-type (WT) animals. MOXI knockout mice also exhibit a profound reduction in exercise capacity, highlighting the role of MOXI in metabolic control. The functional characterization of MOXI provides insight into the regulation of mitochondrial metabolism and energy homeostasis and underscores the regulatory potential of additional micropeptides that have yet to be identified.


Assuntos
Ácidos Graxos/metabolismo , Mitocôndrias Musculares/metabolismo , Proteínas Mitocondriais/genética , Sequência de Aminoácidos , Animais , Ácidos Graxos/química , Humanos , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mitocôndrias Cardíacas/metabolismo , Proteínas Mitocondriais/metabolismo , Oxirredução , Alinhamento de Sequência
15.
JCI Insight ; 2(14)2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28724790

RESUMO

The Mediator complex regulates gene transcription by linking basal transcriptional machinery with DNA-bound transcription factors. The activity of the Mediator complex is mainly controlled by a kinase submodule that is composed of 4 proteins, including MED12. Although ubiquitously expressed, Mediator subunits can differentially regulate gene expression in a tissue-specific manner. Here, we report that MED12 is required for normal cardiac function, such that mice with conditional cardiac-specific deletion of MED12 display progressive dilated cardiomyopathy. Loss of MED12 perturbs expression of calcium-handling genes in the heart, consequently altering calcium cycling in cardiomyocytes and disrupting cardiac electrical activity. We identified transcription factors that regulate expression of calcium-handling genes that are downregulated in the heart in the absence of MED12, and we found that MED12 localizes to transcription factor consensus sequences within calcium-handling genes. We showed that MED12 interacts with one such transcription factor, MEF2, in cardiomyocytes and that MED12 and MEF2 co-occupy promoters of calcium-handling genes. Furthermore, we demonstrated that MED12 enhances MEF2 transcriptional activity and that overexpression of both increases expression of calcium-handling genes in cardiomyocytes. Our data support a role for MED12 as a coordinator of transcription through MEF2 and other transcription factors. We conclude that MED12 is a regulator of a network of calcium-handling genes, consequently mediating contractility in the mammalian heart.

16.
Sci Adv ; 3(4): e1602814, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28439558

RESUMO

Duchenne muscular dystrophy (DMD), caused by mutations in the X-linked dystrophin gene (DMD), is characterized by fatal degeneration of striated muscles. Dilated cardiomyopathy is one of the most common lethal features of the disease. We deployed Cpf1, a unique class 2 CRISPR (clustered regularly interspaced short palindromic repeats) effector, to correct DMD mutations in patient-derived induced pluripotent stem cells (iPSCs) and mdx mice, an animal model of DMD. Cpf1-mediated genomic editing of human iPSCs, either by skipping of an out-of-frame DMD exon or by correcting a nonsense mutation, restored dystrophin expression after differentiation to cardiomyocytes and enhanced contractile function. Similarly, pathophysiological hallmarks of muscular dystrophy were corrected in mdx mice following Cpf1-mediated germline editing. These findings are the first to show the efficiency of Cpf1-mediated correction of genetic mutations in human cells and an animal disease model and represent a significant step toward therapeutic translation of gene editing for correction of DMD.


Assuntos
Sistemas CRISPR-Cas , Distrofina , Distrofia Muscular Animal/terapia , Distrofia Muscular de Duchenne/terapia , Miócitos Cardíacos/metabolismo , Animais , Distrofina/genética , Distrofina/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos mdx , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Miócitos Cardíacos/patologia
17.
Genes Dev ; 30(4): 434-46, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26883362

RESUMO

The Mediator complex governs gene expression by linking upstream signaling pathways with the basal transcriptional machinery. However, how individual Mediator subunits may function in different tissues remains to be investigated. Through skeletal muscle-specific deletion of the Mediator subunit MED13 in mice, we discovered a gene regulatory mechanism by which skeletal muscle modulates the response of the liver to a high-fat diet. Skeletal muscle-specific deletion of MED13 in mice conferred resistance to hepatic steatosis by activating a metabolic gene program that enhances muscle glucose uptake and storage as glycogen. The consequent insulin-sensitizing effect within skeletal muscle lowered systemic glucose and insulin levels independently of weight gain and adiposity and prevented hepatic lipid accumulation. MED13 suppressed the expression of genes involved in glucose uptake and metabolism in skeletal muscle by inhibiting the nuclear receptor NURR1 and the MEF2 transcription factor. These findings reveal a fundamental molecular mechanism for the governance of glucose metabolism and the control of hepatic lipid accumulation by skeletal muscle. Intriguingly, MED13 exerts opposing metabolic actions in skeletal muscle and the heart, highlighting the customized, tissue-specific functions of the Mediator complex.


Assuntos
Glucose/metabolismo , Homeostase/genética , Fígado/metabolismo , Complexo Mediador/genética , Complexo Mediador/metabolismo , Músculo Esquelético/metabolismo , Animais , Dieta Hiperlipídica , Fígado Gorduroso/genética , Deleção de Genes , Regulação da Expressão Gênica em Archaea/genética , Técnicas de Inativação de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL
18.
Cell Metab ; 21(2): 237-248, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25651178

RESUMO

Skeletal and cardiac muscles play key roles in the regulation of systemic energy homeostasis and display remarkable plasticity in their metabolic responses to caloric availability and physical activity. In this Perspective we discuss recent studies highlighting transcriptional mechanisms that govern systemic metabolism by striated muscles. We focus on the participation of the Mediator complex in this process, and suggest that tissue-specific regulation of Mediator subunits impacts metabolic homeostasis.


Assuntos
Metabolismo Energético , Músculos/metabolismo , Animais , Homeostase , Humanos
19.
EMBO Mol Med ; 6(12): 1610-21, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25422356

RESUMO

The heart requires a continuous supply of energy but has little capacity for energy storage and thus relies on exogenous metabolic sources. We previously showed that cardiac MED13 modulates systemic energy homeostasis in mice. Here, we sought to define the extra-cardiac tissue(s) that respond to cardiac MED13 signaling. We show that cardiac overexpression of MED13 in transgenic (MED13cTg) mice confers a lean phenotype that is associated with increased lipid uptake, beta-oxidation and mitochondrial content in white adipose tissue (WAT) and liver. Cardiac expression of MED13 decreases metabolic gene expression in the heart but enhances them in WAT. Although exhibiting increased energy expenditure in the fed state, MED13cTg mice metabolically adapt to fasting. Furthermore, MED13cTg hearts oxidize fuel that is readily available, rendering them more efficient in the fed state. Parabiosis experiments in which circulations of wild-type and MED13cTg mice are joined, reveal that circulating factor(s) in MED13cTg mice promote enhanced metabolism and leanness. These findings demonstrate that MED13 acts within the heart to promote systemic energy expenditure in extra-cardiac energy depots and point to an unexplored metabolic communication system between the heart and other tissues.


Assuntos
Tecido Adiposo Branco/metabolismo , Tecido Adiposo/metabolismo , Fígado/metabolismo , Complexo Mediador/metabolismo , Magreza/metabolismo , Animais , Metabolismo Energético , Feminino , Humanos , Masculino , Complexo Mediador/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Miocárdio/metabolismo , Transdução de Sinais , Magreza/genética
20.
EMBO Mol Med ; 6(4): 436-8, 2014 04.
Artigo em Inglês | MEDLINE | ID: mdl-24623378

RESUMO

The heart has been recognized as an endocrine organ for over 30 years (de Bold, 2011); however, little is known about how the heart communicates with other organs in the body, and even less is known about this process in the diseased heart. In this issue of EMBO Molecular Medicine, Magida and Leinwand (2014) introduce the concept that a primary genetic defect in the heart results in aberrant hepatic lipid metabolism, which consequently exacerbates hypertrophic cardiomyopathy (HCM). This study provides evidence in support of the hypothesis that crosstalk occurs between the heart and liver, and that this becomes disrupted in the diseased state.


Assuntos
Cardiomiopatia Hipertrófica Familiar/metabolismo , Fígado/metabolismo , Miocárdio/metabolismo , Animais , Feminino , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...